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Abstract—We compare the robustness of image classifiers
based on state-of-the-art Deep Neural Networks (DNNs) with
classifiers based on a model of cortical development using a single
layer of sparse coding. The comparison is based on the ability
of the two distinct types of classifiers to distinguish between
faces of celebrities from the CelebA dataset and synthetic faces
created by the ProGAN multi-scale GAN, trained on the same
CelebA images. We examine the robustness of DNNs compared to
classifiers based on sparse coding after the addition of universal
adversarial perturbations (UAPs), which fool most or all of the
DNN classifiers we examined. Our results show that simple
classifiers based on sparse coding are robust to UAPs that
substantially degrade performance across a wide range of DNN
architectures. We hypothesize that sparse latent representations,
which correspond to fixed points of a dynamical attractor—or
Hopfield network—are naturally denoising and remove small ad-
versarial perturbations. We observe that analogous but reduced
robustness is conferred by deep denoising autoencoders. Our
results suggest that DNN-based classifiers may be designed to
rely on more robust features, and thus may be less susceptible
to adversarial attacks, if preceded by a denoising pre-processing
layer.

Index Terms—sparse coding, deep convolutional neural net-
work, adversarial examples, robustness, denoising, deepfakes

I. MOTIVATION

Deep learning has yielded impressive advances across a va-
riety of machine learning tasks such as playing Go at a cham-
pionship level [1] and correctly labeling natural images [2].
However, highly accurate Deep Neural Networks (DNNs) are
susceptible to adversarial attacks that reliably cause misclassi-
fication [3]–[5]. Initial demonstrations of adversarial examples
used small perturbations that were computed individually for
each image to fool a particular DNN classifier. These initial
demonstrations were intriguing to the research community
because the changes that caused correctly-classified natural
images to be misclassified were small enough to be invisible
to humans, yet cause state-of-the-art DNNs to misclassify
images with high confidence, for example, causing a school
bus to be misclassified as an ostrich [3]. Subsequent work
demonstrated that universal adversarial perturbations (UAPs)
exist that can be added to any image in the test set to fool

any DNN classifier constructed from the same training set [6].
Particularly surprising, UAPs are not class-dependent; rather,
one single adversarial pattern can be learned that can when
added to any image, regardless of class, is likely to cause
misclassification. The changes to an image produced by the
addition of UAPs are typically larger than those produced by
the addition of image-specific adversarial noise. Indeed, pub-
lished UAPs, although still relatively small, are often readily
visible to humans. Published UAPs also typically exhibit clear
high-frequency structure, although the resulting patterns are
typically semantically meaningless to humans. UAPs likely
align with principle directions, corresponding to directions of
maximum curvature along decision boundaries [7]. The broad
generalizability of UAPs suggests that neural networks are
learning “non-robust” features, which are highly dependent
on the statistical structure of a specific training dataset [8].
This shortcoming highlights the need for novel approaches to
classifier design that improves model robustness.

Unsupervised learning, particularly Boltzmann Machines
[9] and sparse coding paradigms [10], seek to learn joint
distributions or causes directly from unlabeled data and thus
may be less prone to some of the issues that have plagued task-
specific deep learning approaches. Moreover, sparse coding
has been shown to support near state-of-the-art performance
on image labeling tasks using only a linear support vector
machine (SVM) classifier [11], [12].

In this paper, we show that a variety of DNN architectures,
such as Xception [13], Inception [14], DENSENET [15], and
RESNET152 [16], can be trained to differentiate between real
and synthetically-generated faces. We then show that each
of these DNN classifiers can be fooled by UAPs trained
as white box attacks against each architecture separately.
To obtain a single set of UAPs that can fool any DNN
architecture, we construct multi-layer UAPs [6], [17], which
are obtained by successively targeting distinct, state-of-the-
art DNN architectures, all of which were initially trained
to solve the celebrity/synthetic face discrimination task with
high accuracy. After each successive adversarial training stage
we obtain a new UAP layer, which corresponds to a new
perturbation that is added to a set of images already perturbedU.S. Government work not protected by U.S. copyright
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Fig. 1. Top: Examples of cropped, from left to right, real, synthetic, synthetic,
and real faces from the study face dataset described in Sec. III. Second:
Sparse reconstructions using 512-feature dictionary shown in Fig. 2. Third:
Reconstructions by a deep denoising autoencoder. Bottom: Reconstructions by
an image smoothing processing. Second row is discussed in detail in Sec. V
and Sec. VII, and third and bottom rows in Sec. VII.

by UAPs up to but not including the current layer. Specifically,
after each training cycle, we obtain a new UAP that when
added to the images in the test set, both better fools the
targeted DNN while continuing to transfer to other non-
targeted DNNs (white-box and black-box attacks). We then
show that classifiers based on one or two cycles of sparse
coding are robust to multi-layer UAPs that fool a variety of
state-of-the-art DNNs. Finally, we test whether the robustness
of classifiers based on sparse coding to multi-layer UAPs arises
from their denoising properties. Specifically, we explicitly
construct classifiers that employ a deep denoising autoencoder
as a front end preprocessor, and show that such classifiers
are more robust to the multi-layer UAPs than deep learning
classifiers without denoising front-ends but not do not entirely
achieve the robustness conferred by 2 cycles of sparse coding.

II. RELATED WORK

One defense strategy against adversarial attacks involves
training a deep neural network classifier so as to minimize its
classification gradients with respect to small changes in the
input image, thereby making the construction of adversarial
examples more difficult [18], although artificially amplifying
gradients appears to be an effective counter measure [19]. A
second defensive strategy entails adding adversarial examples
explicitly to the training set [20], [21], but such augmentation-
based defenses cannot defend against unseen or novel attacks
and often reduces overall classification accuracy. A third
defensive strategy seeks to train classifiers to directly detect
adversarial examples [22], but as demonstrated by the results

presented below, deep neural networks trained to discriminate
between real and synthetic faces are themselves susceptible to
universal adversarial perturbations whereas classifiers based on
one and two cycles of sparse coding are insensitive to identical
attacks while retaining high overall accuracy on the same
real/synthetic two-class discrimination task. A fourth defense
strategy relies on pre-filtering or purifying input images so as
to remove adversarial perturbations before passing them to a
classifier [23]–[25]. The results presented here not only con-
firm previous studies showing that adversarial perturbations
are often absent from the associated sparse reconstructions
[26]–[30] but moreover extend these findings to a task in which
the two distributions to be distinguished, corresponding to real
and synthetic faces, are optimized to be nearly indistinguish-
able. In the work presented below, sparse coding is used both
to purify the input images and to yield latent representations
that support accurate, robust discrimination between real and
synthetic faces.

III. DATASET

We study a balanced dataset containing 60,000 face-cropped
images of which are 30,000 real celebrity faces and 30,000
synthetic (fake) faces created using multi-scale GANs [31]
with input images collected from CelebA [32]. Examples of
these real and synthesized faces are shown in the top row of
Fig. 1.

We divide the training and test set in each real and synthetic
class of images as a random ratio of 5:1, i.e. there are 50,000
face (25,000 of each real and synthetic) images in the training
set and 10,000 face (5,000 of each real and synthetic) images
in the test set.

IV. SPARSE-CODING

The hypothesis that biological neurons encode stimuli by
inferring sparse representations explains many of the response
properties of simple cells in the mammalian primary visual
cortex [10], [33]. Given an overcomplete, non-orthonormal
basis {φi}, inferring a sparse representation involves finding
the minimal set of non-zero (positive definite) activation coef-
ficients a that accurately reconstruct a given input signal X ,
corresponding to a minimum of the following energy function:

E(X,φ,a) = min
{a,φ}

[
1

2
||X − φa||2 + λ||a||p

]
(1)

where λ is a trade-off parameter that determines the balance
between the reconstruction error of the original input image
X and the number of non-zero (sparse) activation coefficients
a > 0. A larger λ encourages sparser solutions. This second
term in Eq. (1) defines the Lp−norm of the sparsity penalty
where p > 0. In this paper, we solve Eq. (1) using p = 1,
corresponding to an L1-norm. We define γ = 1

2
rank(a)
rank(X) as

the overcompleteness of the basis {φi}, where the factor of
1
2 arises from the fact that our sparse coefficients are positive
definite. γ typically is chosen such that γ � 1 which means
that in general there will exist many solutions which achieve a
similarly small reconstruction error ||X −φa||2 and our task
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Fig. 2. A complete set of 512 elements of the dictionary, learned from 25,000 images of real faces, sorted by their appearance frequency.

is to find the sparsest one. Both the feature maps a and the
dictionary of feature kernels φ can be determined by a variety
of standard methods. Here, we solved for the feature maps
using a convolutional generalization, previously described
[12], [34], of the Locally Competitive Algorithm (LCA) [35],
where the feature kernels themselves are adapted according
to a local Hebbian learning rule that reduces reconstruction
error given a sparse representation. Dictionary learning was
performed via Stochastic Gradient Descent (SGD) using only
real celebrity faces drawn from the training data set. Both
dictionary learning and sparse coding was performed using
PetaVision [36].

V. OPTIMIZING A DICTIONARY FOR SPARSE CODING OF
THE CELEBA DATASET

We trained a convolutional dictionary for sparse reconstruc-
tion of the 25,000 224 × 224 CelebA images of celebrity
faces in the training set. Each feature kernel was replicated
with a stride of 2 pixels in both the vertical and horizontal
directions, resulting in a feature map of size 112× 112× 512,
corresponding to an overcompleteness of γ = 21.3. The set of
512 learned feature kernels can be visualized as RGB color
image patches 18 × 18 in Fig. 2, shown in rank order of
activation frequency. The average activation frequency was
approximately 1%. To reconstruct the original image (as input
X), we generate the sparse representation a obtained by
optimizing Eq. (1) using learned dictionary φ on the 25,000
real face images. Some examples of RGB images of sparse
reconstruction are shown as the second row in Fig. 1.

VI. UNIVERSAL ADVERSARIAL PERTURBATION

A. Universal adversarial attack

[6] and [17] showed that state-of-the-art DNNs can be
fooled with a single perturbation, independent of the input im-
ages, built upon universal adversarial networks (UANs). Based
on a generative model architecture, an Universal Adversarial
Perturbation (UAP) is crafted from an UAN that generates
perturbations from sampled noise. When this perturbation is
added to the input image, the targeted neural network is more
likely to misclassify the input object. UANs typically consists
of several deconvolutional layers with activation ReLUs fol-
lowed by several fully connected tables. The UAP is optimized
[5], [17], [37] by the following objective function:

LUAP = max {log [f(X + δ)]c0 −max
i 6=c0

log [f(X + (2)

δ)]i − κ} + α ‖δ‖p

where X and δ are the image input and scaled noise, re-
spectively. α is a control parameter on the noise distance
loss [last term in Eq. (3)]. f is a probability (e.g. softmax)
function. The UAP was minimized over the training celebrity
face images until a confidence criteria κ is reached. We employ
the L∞(p=∞)-norm to optimize the loss in Eq. (3). We stop
the optimization (see also Ref. [17]) when classifier f(X + δ)
misclassifies X of class i as class c0, where c0 6= i, such
that the largest single perturbation in δ is minimal. Here,
the classes are binary (real and fake), thus i and c0 are
∈ {real, synthetic}.

B. Deep neural networks (DNNs)

We study five DNN models: RESNET50, RESNET152 [16],
DENSENET121 [15], Inception-v3 [14] and Xception [13].
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All five networks were optimized on the same 50,000 “clean”
(no-adversarial-noise) training set and all generalized perfectly
to the 10,000 test faces in the holdout dataset which each DNN
architecture achieving a perfect classification score (absolute
zero error) as shown in Table I. Perfect classification scores
on this task are not entirely surprising if we recall that the
synthetic images are generated using a multi-scale GAN. By
allowing the different DNN architectures to optimize on a fixed
distribution, we are in essence fixing the generator half of a
GAN so that only the detector half of the GAN can adapt.

Next, all five DNN classifiers are tested on the 10,000
“noisy” test faces. We first attack each of the five deep learn-
ing architectures separately. Specifically, we create separate
UAPs for each of the 5 DNN architectures which we use
to create 5 ’noisy’ test sets and examine performance of
each DNN classifiers on the noisy test sets optimized for
each architecture. The transferability of these five separately
optimized attacks on the other four remaining networks is
summarized in Table II. Transferability, measured by the
off-diagonal elements in Table II, attains the largest values
between the pair of DNNs RESNET152 (being targeted,
column label in Table II) and nontargeted RESNET50 (row
label in Table II), which is T(RESNET152,RESNET50) = 50.04%,
and also between T(Xception,Inception-v3) = 50.16%. Low trans-
ferability is found with T(DENSENET121,RESNET152) = 22.93%
or T(RESNET152,DENSENET121) = 24.5%. Note that classification
accuracy is given by 100% − T , i.e. the higher the success
attack rate (classification error), the lower the accuracy of the
targeted classifier. In this paper, we generated UAPs that were
approximately 4% of the input image, i.e. ( ‖δ‖p

‖X‖p
= 0.04).

Xception and RESNET50 were the most fragile DNNs (attacks
optimized for these architectures were least transferable to
other DNNs) with a maximum T(A,B) ≈ 50% where A =
Xception or RESNET50 and B being the remaining 4 DNNs
in each case) while DENSENET is the least fragile DNN
of 5 architectures explored here. In Table II, transferability
from attacking any one in the 5 DNNs to the remaining 4
architectures reaches a highest value of about 50%.

C. Multiple-layer universal adversarial perturbations (UAPs)

To obtain a single adversarial perturbation that would be
effective against any DNN architecture, we created a multi-
layer UAP by attacking different DNN architectures suc-
cessively. Here, a second layer of UAPs is generated by
starting with a set of test images to which UAPs targeted
against Xception have been added and then performing a
second adversarial attack against RESNET50. A third layer
of UAPs is then generated by a subsequent attack against
DENSENET121. Adversarial perturbations obtained by these
sequential attacks are shown in Fig. 3. We explored a large
number of possible multi-layer UAP sequences and determined
the sequence employed here to be the most effective.

For the {celebrity,synthetic} face discrimination task, we
find that multi-layer UAPs can be constructed which trans-
fer well between different DNN architectures. As shown
in Table III, we obtain transferability above 45% between

Fig. 3. One, two and three layer UAPs generated by attacking, from left to
right, Xception, Xception and RESNET50, and Xception and RESNET50 and
DENSENET121, respectively.

any pair of three targeted networks (Xception, RESNET50,
DENSENET121). Although constructed by successive attacks,
multi-layer UAPs nonetheless represent a single, universal
perturbation procedure that can be applied to any test image in
order to fool a wide-range of DNN architectures. An example
of a test image to which the 3 layers of UAPs (right panel in
Fig. 3) have been added is shown as the second panel from
the left of Fig. 4. Classification error that translates as attack
success rate (or transferability, applicable to networks that are
not being attacked) for all 5 networks is summarized in Ta-
ble III. Corresponding classification accuracy (100%−T ) from
Table III reads 22.98%, 54.82%, 23.66%, 49.97%, and 16.52%
for RESNET50, RESNET152, DENSENET121, Inception-v3,
and Xception, respectively. Note that only RESNET152 has
a classification accuracy above chance (50%). We regularized
the 2nd and 3rd layer UAPs (optimized against RESNET50
and DENSENET121, respectively) by requiring that the attack
success rate for each of the 5 DNNs must not decrease
considerably (accepted fluctuations < 3% if decreased) when
another new UAP layer is added. This regularization explains
the low classification accuracy for the three targeted networks,
particularly Xception (16.52%), for the the 3-layer UAP,
because Xception is the first layer of this multiple layer attack
with an attack success rate of 80.17% (last diagonal element in
transferability matrix in Table II, equivalent 19.83% accuracy)
and this number was increased after two additional layers
of UAPs optimized against RESNET50 and DENSENET121,
respectively.

VII. ROBUSTNESS OF DEEP NEURAL NETWORKS VS.
SPARSE CODING AGAINST UNIVERSAL ADVERSARIAL

PERTURBATIONS (UAPS)

A. Denoisers

We compare three denoising strategies. (i) One of the most
widely used applications of sparse coding is denoising [38].
(ii) To make a fair comparison between DNN and sparse cod-
ing based classifiers, we added a “pre-processing” denoising
stage to the DNN, which was then retrained and applied to the
UAP test set derived from the original DNNs. The denoising
autoencoder consisted of 3 convolutional layers with 128, 64
and 32 kernels. (iii) We used another denoiser that is an image
smoothing process based on a wavelet decomposition protocol
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RESNET50 RESNET152 DENSENET121 Inception-v3 Xception
Classification error (%)

(no noise) 0.0 0.0 0.0 0.0 0.0

TABLE I
CLASSIFICATION ERROR OF ALL FIVE STUDIED DEEP NEURAL NETWORKS.

RESNET50 RESNET152 DENSENET121 Inception-v3 Xception
RESNET50 80.03 47.92 40.44 33.09 49.93
RESNET152 50.04 87.01 24.5 49.98 49.93
DENSENET121 50.02 22.93 70.09 37.31 49.36
Inception-v3 49.94 46.09 47.68 80.11 49.02
Xception 49.9 43.28 49.98 50.16 80.17

TABLE II
SUMMARY OF WHITE-BOX ATTACK SUCCESS AND TRANSFERABILITY (%) OF UAPS TARGETED AGAINST EACH OF FIVE DNN MODELS OF TABLE I.

BOLD TEXTS INDICATE ATTACKED NETWORKS. BOLD NUMBERS (DIAGONAL ELEMENTS) HIGHLIGHT THE WHITE-BOX ATTACK RATES OF SUCCESS ON
THE CORRESPONDING DNNS LISTED IN THE ASSOCIATED COLUMN. OFF-DIAGONAL ELEMENT MEASURES HOW WELL THE UAP TRANSFERS TO EACH

OF THE OTHER 4 DNN MODELS WITH HIGHER VALUES DENOTING BETTER TRANSFERABILITY.

RESNET50 RESNET152 DENSENET121 Inception-v3 Xception
Classification error (%)

(3 UAP-layer noise) 77.02 45.18 76.34 50.03 83.48

TABLE III
CLASSIFICATION ERROR ON THE NOISY TEST SET WHERE NOISE SET IS OBTAINED BY ATTACKING SUCCESSIVELY XCEPTION AND RESNET50 AND

DENSENET121 FOR THE 5 STUDIED DNNS IN TABLE VI-B.

Fig. 4. Example of a test image to which layers of UAPs have been added, corresponding to successive attacks against the combination of 3 noise type
generated using Xception followed by RESNET50 and then followed by DENSENET121. From left to right: original test example, study UAP-added test
example, test example denoised by sparse coding, test example denoised by deep autoencoder, and test example denoised with an image smoothing processor.

(as an example see [39]). Here, we generated each new 60,000
dataset from the no-adversarial-noise 60,000 faces for each
case of (i) sparse coding, (ii) denoising autoencoder, and (iii)
smoothing. Each separate 10,000 image test set input for
each denoising procedure was also generated that “denoised”
the test faces with 3 UAP layers of noises attached. As a
result, each denoiser now outputs a new different 10,000
denoised image test set. Mean-square error (MSE) is evaluated
as the mean square distance from N = 10, 000 denoised
test images Xi

recon of length M to their input images Xi

as 1
NM

∑
i ‖X

i −Xi
recon‖2). These 3 denoisers (i), (ii), and

(iii) generate output images that look as, respectively, second,
third, and bottom row in Fig. 1 for the case with no adversarial
noises added and corresponding MSE being 109.86 (i), 111.57
(ii), and 37.54 (iii).

B. Robustness from denoising
We trained separate classifiers on each of the datasets

generated using the 4 denoising strategies. (i) A linear Support
Vector Machine (SVM) [40] for classifying 4× 4 max-pooled

sparse representations. An Xception model for classifying the
output of either the (ii) deep denoising autoencoder (AE), (iii)
smoothing filter, or (iv) sparse reconstructions, respectively.
Corresponding classification accuracy for the different classi-
fiers applied to the non-noisy test dataset are shown as blue
columns in Fig 5. In the absence of 3-layer UAPs, all 5 DNNs
attain perfect scores on the holdout test dataset (see bottom
row in Tables I. Xception, which was highly susceptible to the
multi-layer UAP attack, was used for assessing the impact of
the denoising pre-processing stage. All 4 denoising classifiers
(both linear SVM and Xception based) do well on the hold
out test dataset in the absence of 3-layer UAP holdout test
dataset with classification accuracy all above 98%. For ease
of comparison, we replot the performance of the Xception
classifier (shown previously in Table I). The first cycle of
pooled sparse latent representation passed to a linear SVM
yielded 98.57% accuracy. To achieve additional denoising, we
performed a 2nd cycle of sparse coding on the sparse recon-
structions generated from the 1st cycle and passed the resulting
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Fig. 5. Classification accuracy with and without a denoising pre-processing
stage. Blue and yellow columns refer to holdout test images with and without
the addition of 3-layer UAPs, respectively. First column set) Xception without
any denoising pre-processing stage. Second and third column sets) A linear
SVM applied to the 4 × 4 max-pooled latent representations resulting from
one and two cycles of sparse coding (SC), respectively. Fourth, fifth and sixth
column sets) An Xception model was trained on images passed through one of
three denoising pre-processing stages, either a denoising autoencoder (AE), a
smoothing filter, or a sparse reconstruction (recon). UAPs were not present in
any of the training images with or without a denoising pre-processing stage.
Two cycles of sparse coding produced the most robust classifier, followed
closely by a denoising autoencoder.

4 × 4 max-pooled sparse latent representations to a retrained
linear SVM, yielding a reduced accuracy of 93.71% on the
original holdout test dataset in the absence of 3-layer UAPs.
Xception preceded by a deep denoising autoencoder yielded an
accuracy of 98.34%, Xception preceded by smoothed images
produced an accuracy of 99.96%, and finally Xception applied
to sparse reconstructions yielded an accuracy of 99.68%. Note
again that all classifiers discussed in this paper are trained on
the same 50,000 training image datasets in the absence of any
added multi-layer UAPs.

The sparse reconstruction of a noisy image from our test
dataset to which the 3-layer UAP has been added is shown in
Fig. 4 (third panel from the left). Analogous denoised output
images for the same noisy image with 3-layer UAP added
using either a deep denoising autoencoder or a smoothing
filter are shown as the fourth and fifth panels in Fig. 4,
respectively. Mean square distance, MSE, of the 10,000 de-
noised test images to their “noisy” inputs, respectively, is 95.2
(i), 153.81 (ii), and 118.72 (iii), confirming visual inspection
which reveals that the denoising autoencoder most completely
removes the added 3-layer UAP, although the added UAPs
are significantly removed by all three denoising pre-processing
stages. As noted previously, adding 3-layer UAPs to the image
test dataset drastically reduced the accuracy of the Xception
classifier trained on the original non-noisy training dataset,
as shown by the first yellow column in Fig. 5, producing
a classification accuracy on the adversarial test dataset of
only 16.52%. Classification results on the adversarial test
dataset obtained using one and two cycles of sparse coding,
pooled to a 4 × 4 grid and combined with a linear SVM

trained on the non-adversarial training set achieves 70.95%
and 92.69%, respectively, as shown by the second and third
yellow columns in Fig. 5). The accuracy on the adversarial
holdout test dataset obtained by applying the DNN Xception
classifiers trained separately on the non-adversarial training
dataset passed through each of the the three denoising pre-
processors, (i) denoising autoencoder (AE), (ii) smoothing
filter, and (iii) sparse reconstructions, shown by the last 3
yellow columns in Fig. 5, was lower, 90.82%, 54.08%, and
50.42%, respectively, although the denoising autoencoder was
only slightly lower. The above results show that without a pre-
processing denoising stage, both one and two cycles of sparse
coding followed by a linear SVM outperforms an Xception
model (and the other 4 DNNs, see also Table III) on the
adversarial test dataset when trained on the non-adversarial
training set. However, after a deep denoising autoencoder is
added as a pre-processing step, the Xception model improves
substantially in classification performance, almost matching
the classification performance achieved by 2 cycles of sparse
coding followed by a linear SVM. This substantial improve-
ment in the classification performance of the Xception model
when preceded by a deep denoising autoencoder is no longer
seen in case we used a different type of denoising pre-
processing stage, i.e sparse reconstruction or smoothing. As
noted above, both sparse reconstruction and smoothing filters
preserve the added 3-layer UAPs more than does the denoising
autoencoder, perhaps explaining why the denoising autoen-
coder yields a more robust classifier when employed as a pre-
processing stage. Classifiers based on Xception all perform
very well on non-adversarial holdout test images, whether the
original (non-adversarial) training images are passed through a
deep denoising autoencoder, sparse reconstruction or smooth-
ing filter. However, the resulting classifiers are different with
respect to their sensitivity to 3-layer UAPs. A classifier based
on a linear SVM applied to the pooled latent representations
resulting from 2 cycles of sparse coding are almost completely
resistant to the addition of the 3-layer UAPs, suggesting that
such classifiers are using different criteria for the real vs
synthetic discrimination task.

VIII. DISCUSSION

The ability to detect synthetic content will become increas-
ingly important in order for society to distinguish between real
and fake news sources. Our results confirm that DNNs can
reliably detect synthetic content in fixed databases. However,
DNNs are intrinsically susceptible to being fooled by adver-
sarial examples. Indeed, GANs work by explicitly constructing
adversarial examples. Thus, using DNNs to detect GAN-
generated synthetic images is inherently circular. Here, we
show that classifiers based on a single layer of sparse coding
optimized for the reconstruction on celebrity faces can detect
synthetic faces with high accuracy in a manner that is robust to
conventional adversarial attacks, a robustness that arises from
the denoising properties of sparse reconstructions. A linear
SVM classifier is able to produce accurate discriminations be-
tween celebrity and synthetic faces based on their sparse latent
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representations, suggesting that the sparse latent representation
averaged over all celebrity faces provides a principle direction
against which synthetic faces can be compared.
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